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Abstract: Physical chemistry is considered to be a scientifically abstract and mathematically intensive course in 
the undergraduate chemistry curriculum. To most students, the physical chemistry course involves a semester that 
deals with macroscopic properties and another that deals with microscopic evaluations of chemical systems. They 
often fail to see the importance of statistical mechanics in making the connection between the content of the two 
semesters. In this paper, we propose a computational exercise that complements a simple physical chemistry 
experiment that can be used to understand the chemical basis of a macroscopic property such as the heat capacity 
of gases using microscopic (classical and quantum) mechanics. Students are given the opportunity to use (1) 
computational chemistry software to calculate the contributions of translational, rotational, and vibrational 
motion to the energy of molecules; (2) a graphing program to study the linear and nonlinear dependence of 
energy on temperature; (3) classical, quantum, and statistical mechanical theory to verify experimental data; (4) 
regression analysis to approximate the heat capacity constant of simple gases from energy calculations. 

Introduction 

Heat capacity is introduced to students in freshmen 
chemistry and in the first couple of weeks of physical 
chemistry. It quantitatively expresses the amount of energy 
involved with a change of temperature of a given substance. 
Energy provided under isobaric conditions results in constant-
pressure heat capacity (CP) while isochoric measurements 
result in constant-volume heat capacity (CV)  

Heat capacity values are used widely for a variety of heat-
transfer and mass-transfer applications by scientists and 
engineers. Dimensionless groups [1] using this property in 
scientific and engineering applications are listed in Table 1 
using the following: thermal conductivity (k), density (ρ), 
constant pressure heat capacity (CP), dynamic viscosity (µ), 
distance downstream from the leading edge of surface (x), free 
stream velocity (U), heat transfer coefficient (h), thickness (L), 
time (t), and diameter of tube (D). 

The relevance of heat capacity to several branches of 
science and engineering makes its experimental estimation an 
important component of a physical chemistry or physics 
laboratory. Adiabatic expansion and sound velocity have been 
the most accepted methods for calculating heat capacity ratios 
(CP/CV) of ideal gases [2�4]. While the apparatus for the 
adiabatic expansion experiment can be easily assembled using 
simple laboratory glassware (large glass carboy, glass tubes, 
manometer), the setup is much more extensive and expensive 
(Kundt�s tube with speaker unit, oscillator, oscilloscope, 
amplifier) for the sound velocity method. The adiabatic 
expansion method is often found to be less accurate compared 
to the sound-velocity method mainly due to the inability to 
maintain adiabatic, reversible, and atmospheric conditions 
during different phases of the experiment. 

A useful addition to this experiment has been to compare 
experimental results to theoretical calculations where the 
degrees of freedom are estimated from the number of atoms 
and shape of the molecules. The classical principle of 
equipartition is then used to assess the individual contributions 

of motion to the overall energy and heat capacity. This analysis 
is not exact, mainly due to the dependence of heat capacity on 
temperature, but is useful because it gives the limit that heat 
capacity approaches at high temperatures. A more exact 
analysis would involve a statistical treatment of the way the 
molecules distribute themselves among the various energy 
levels. 

In this paper, we propose to show how macroscopic 
thermodynamic properties emerge from the microscopic 
properties of molecules and atoms. This exercise is intended 
for physical chemistry students and provides them the 
opportunity to use (1) quantum chemical software to calculate 
the contribution of translational, rotational, and vibrational 
motion to energy of molecules; (2) a graphing program to 
study the linear and nonlinear temperature dependence of 
energy; (3) quantum chemistry and equipartition theory to 
explain energy and heat capacity; (4) regression analysis to 
approximate the heat capacity constant of simple gases. 

Experimental Methods 

Students built six simple gaseous systems such as 
monoatomic argon, diatomic nitrogen, polyatomics carbon 
dioxide, ethyne, water, and methane using a molecular 
modeling software such as PC SPARTAN PLUS 
(Wavefunction, Inc.). Next, the structures were geometry-
optimized and frequency calculations made at different 
temperatures. Total (translational + vibrational + rotational) 
energy (Etotal) calculations were carried using the AM1 semi-
empirical method. Linear and exponential regression using 
simple spreadsheet software such as EXCEL (Microsoft) 
provided the nature of dependence of the different modes of 
motion to heat capacity. Approximate heat-capacity values for 
the gases were finally calculated using the regression results. 

Results 

The contribution of the different degrees of freedom to 
energy for the six gases calculated by the semi-empirical AM1 
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Table 1. Dimensionless Groups with CP Parameters 

Dimensionless group Uses 
Thermal Diffusivity (α) = k/(ρCP) Estimates the ability of a material to conduct compared to its 

ability to store thermal energy 
Prandtl Number (Pr) = ν/α = (µ/ρ)/(k/ρCP)  
                                            = (CPΙ) /k 

Ratio of momentum diffusivity to bulk diffusivity indicating 
the relative rates of growth of the velocity and thermal 
boundary layers in forced convection problems 

Peclet Number (Pe) = RePr = (xUρCP)/k Ratio of bulk to conductive heat transfer used in general and 
forced convection 

Stanton Number (St) = h/(ρUCP) Relates fluid friction and convective heat transfer 
Fourier Number (Fo) = (kt)/(ρCpL2) 
                                  = (αt)/L2 

Unsteady conduction in plates, cylinders, and spheres 

Graetz Number (Gz) = RePr 
                                  = (πDUρCP)/(4k) 

Convective heat transfer when heating or cooling takes place 
for a fluid flowing inside a closed conduit 

 
 
 
Table 2. Translational (Etrans), Rotational (Erot) and Vibrational (Evib) Energy in Calories per Mole of Gases in the Temperature Range of 273 To 
1800 K 

T Etrans Erot (di/polyatomics) Evib (di/polyatomics) 
(K) All Linear Nonlinear N2 CO2 C2H2 H2O CH4 
273 814 543 814 3923 7488 18042 12830 27870 
300 894 596 894 3923 7552 18096 12831 27882 
350 1043 696 1043 3923 7687 18230 12832 27922 
400 1192 795 1192 3923 7842 18402 12836 27991 
450 1341 894 1341 3924 8014 18609 12843 28094 
500 1490 994 1490 3926 8201 18846 12855 28230 
 550 1639 1093 1639 3929 8403 19110 12871 28402 
600 1788 1192 1788 3934 8617 19398 12894 28609 
650 1938 1292 1938 3941 8844 19707 12922 28849 
700 2087 1391 2087 3951 9081 20036 12958 29122 
750 2236 1490 2236 3964 9330 20384 13002 29425 
800 2385 1590 2385 3980 9588 20748 13053 29758 
850 2534 1689 2534 3999 9855 21129 13112 30120 
900 2683 1788 2683 4022 10131 21525 13179 30508 
950 2832 1888 2832 4048 10414 21935 13254 30923 
1000 2981 1987 2981 4077 10705 22359 13338 31361 
1050 3130 2087 3130 4110 11002 22796 13429 31823 
1100 3279 2186 3279 4146 11305 23246 13529 32307 
1150 3428 2285 3428 4185 11615 23707 13636 32812 
1200 3577 2385 3577 4226 11929 24179 13751 33336 
1250 3726 2484 3726 4271 12248 24662 13874 33878 
1300 3875 2583 3875 4318 12572 25154 14003 34438 
1350 4024 2683 4024 4368 12900 25656 14140 35014 
1400 4173 2782 4173 4420 13232 26167 14283 35606 
1450 4322 2881 4322 4474 13567 26686 14432 36212 
1500 4471 2981 4471 4531 13905 27213 14587 36831 
1550 4620 3080 4620 4589 14247 27697 14748 37415 
1600 4769 3180 4769 4650 14592 28203 14915 38014 
1650 4918 3279 4918 4712 14939 28708 15087 38612 
1700 5067 3378 5067 4776 15289 29214 15264 39211 
1750 5216 3478 5216 4841 15641 29720 15445 39809 
1800 5365 3577 5365 4908 15995 30226 15632 40407 
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Figure 1. Temperature versus translational energy for all molecules. 

 
Figure 2. Temperature versus rotational energy for di- and polyatomic 
molecules. 

 
Figure 3. Temperature versus vibrational energy for di- and 
polyatomic molecules. 

method are presented in Table 2. Figures 1�3 provide a 
graphical representation of the data presented in Table 2. 

The three graphs show the following: (1) linear dependence 
of translational energy on temperature with a slope of 2.9807 
cal mol-1 K-1, (2) linear dependence of rotational energy on 
temperature with a slope of 2.9807 cal mol-1 K-1 for nonlinear 
polyatomic molecules and 1.9807 cal mol-1 K-1 for diatomic 
and polyatomic linear molecules, (3) nonlinear dependence of 
vibrational energy on temperature at low temperatures and 
linear dependence at higher temperatures. These results are not 
surprising because computational chemistry software like 
Spartan calculate translational and rotational energies based on 
equipartition theory and vibrational energy based on quantum 
mechanical theory. Statistical thermodynamics also provides a 
rationale for these observations. 

According to the classical equipartition theorem, for a large 
number of particles obeying Newtonian mechanics, each 
degree of freedom at equilibrium contributes on average kT/2 

of energy per molecule or RT/2 of energy per mole for a 
particular temperature, T. In other words, each squared term in 
the energy equation contributes RT/2 to the molar energy and 
R/2 to molar heat capacity at constant volume. 

The translational energy (Etrans) of a gas molecule is given 
by  

 Etrans = ½ (mvx
2 + mvy

2 + mvz
2) (1) 

where vx, vy, and vz are the velocities in the three independent 
translational coordinates that specify the position of the center 
of mass, m. The three square terms in eq 1 results in the Etrans 
to be (3/2)RT for all the molecules in Figure 1. The slope of 
the Etrans-versus- temperature line is therefore found to be 
(3/2)R or 2.9807 cal mol-1 K-1. 

The rotational energy (Erot) of a gas molecule is given by 
equation 2a for non-linear polyatomic molecules and by 
equation 2b for diatomic and linear polyatomic molecules 

 Erot = ½ (Iωx
2 + Iωy

2 + Iωz
2) (2a) 

 Erot = ½ (Iωx
2 + Iωy

2) (2b) 

where, ωx, ωy, ωz are the rotational velocities and I is the 
moment of inertia. The two rotational degrees of freedom 
result in Erot for diatomic and linear polyatomic molecules to 
be RT and for nonlinear polyatomic molecules having three 
degrees of rotation to be (3/2)RT. The slopes of Erot-versus-
temperature line for diatomic and linear polyatomic molecules 
can then be expected to be R or 1.987 cal mol-1 K-1 and (3/2)R 
or 2.9807 cal mol-1 K-1 for nonlinear polyatomic molecules as 
is evident in Figure 2. 

The vibrational energy (Evib) for a one-dimensional 
harmonic oscillator gas molecule is given by 

 Evib = ½ (mvx
2 + kx2) (3) 

where vx is the velocity, m is mass, x is displacement, and k the 
force constant. If equipartion theorem could explain vibrational 
motion completely, we should have obtained linear plots with 
slopes that were multiples (3N � 5 for diatomics and linear 
polyatomics, 3N � 6 for nonlinear polyatomics) of R/2 
depending on the number of atoms (N) and shape of the 
molecules. In other words, the slope of the Evib-versus-
temperature line would have a slope of R for N2, (3/2)R for 
H2O, (4/2)R for CO2, (7/2)R for C2H2 and (9/2)R for CH4. 
Nonlinearity at low temperatures and a linear trend at higher 
temperatures in Figure 3 shows the limitation of equipartition 
theory for vibrational motion. This behavior can be 
rationalized because vibrational levels are much more widely 
spaced than the translational and rotational levels. Movement 
of energy into and out of vibrational modes is more restricted 
and involves a large quantum of energy. The complex 
vibrational contributions can be explained using quantum 
mechanical theory. The availability of personal computers and 
user-friendly computational software has made such analysis 
of multielectron systems (once the realm of the theoretical 
chemist with access to supercomputers) possible even at the 
undergraduate level. 
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Table 3. Normal Modes of Vibration of the Molecules in cm�1 
Obtained from Handbook [6] (νliterature) and Computed by Spartan 
(νcomputed) 

Molecule νliterature νcomputed 
Ar None None 
N2 2358.6 2568 
CO2 667, 667, 1388, 2349 675.87, 675.87, 1337.98, 

2312 
H2O 1595, 3657, 3756 1876.42, 3529.04, 3604.84 
C2H2 613.3, 730.7, 1328.1, 

1974, 2701, 3282.5, 
3373.2 

830.62, 830.62, 1070.86, 
1070.86, 2169.15, 3161.57, 
3229.48 

CH4 1306.2, 1306.2, 1306.2, 
1526, 1526, 2914.2, 
2914.2, 2914.2, 3020.3 

1348.83, 1348.83, 1348.83, 
1388.22, 1388.22, 3218.03, 
3218.03, 3218.03, 3332.48 

 
Table 4. Reduced Mass for Some of the Molecules 

Molecule Atoms 
considered 

Reduced 
Mass 
µ = 
(m1m2)/(m1 + 
m2) 

Vibrational 
energy at 
273 K 

Vibrational 
energy at 
1800 K 

N2 N and N 7 3923 4908 
CO2 C and O 6.857 7488 15995 
H2O H and O 0.941 12830 15632 
CH4 C and H 0.923 27870 40407 
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Figure 4. Vibrational energy calculated using eq 4 (freq) and software 
(Spartan) for polyatomic molecules. 
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Figure 5. Total energy versus temperature for the di- and polyatomic 
gases. 

 

According to quantum chemical theory, the exponential 
expression for vibrational energy is given by 

Evib = Σ{(hνi/2) + [hνiexp(�hνi/kT)]/[1 � exp(�hνi/kT)]}  (4) 

where h is Planck�s constant, νi is the ith normal vibration 
frequency and k is the Boltzmann constant [6]. According to 
this theory, vibrational energy is highly quantized with the 
various vibrational modes only partially populated at ordinary 
temperatures having unique vibrational frequencies. 

Frequency calculations by Spartan gave qualitative (nature 
of vibrations) and quantitative (normal modes) estimates for 
the vibrational motion of the molecules and are presented in 
Table 3. 

The frequencies computed by the software were in good 
accord with the handbook values for all the molecules except 
nitrogen. The differences can be attributed to the omission of 
electronic correlation and the harmonic approximation for the 
vibrational potential energy at the AM1 level of calculation. 
The errors would be minimized if calculations were performed 
using ab initio methods. 

The computed normal modes were then substituted into eq 4 
and the resulting vibrational energies were compared with the 
Evib values presented in Table 2. Figure 4 shows excellent 
agreement between the two values for the polyatomic 
molecules. 

Another interesting feature was the relationship between the 
magnitude of vibrational energies with reduced mass at any 
given tempertaure. The reduced mass and vibrational energy in 
the temperature limits is presented in Table 4. 

The higher the reduced mass of a molecule, the lower was 
the vibrational energy. N2 with the highest reduced mass (µ = 
7) had the smallest vibrational frequency while CH4 with the 
lowest reduced mass (µ = 0.923) had the largest value at all 
temperatures. C2H2 did not follow the trend possibly due to the 
presence of double bonds and variable reduced mass (0.923 for 
C�H and 1.12 for C�C). 

The total energy was obtained as a sum of the translational 
(Etrans), rotational (Erot), and vibrational (Evib) contributions. 
Figure 5 shows the temperature dependence of total energy for 
the polyatomic molecules. This information was used to 
estimate the heat capacity of the gases in the given temperature 
range. 

From thermodynamics, change in total energy and enthalpy 
[7] for a process involving no phase change can be represented 
by 

 ∆E = E(T2) � E(T1) = E2 � E1 = T1∫
T2 CV. dT  (5) 

 ∆H = H(T2) � H(T1) = H2 � H1 = T1∫
T2 CP. dT (6) 

where ∆E and ∆H are changes in energy and enthalpy, CV and 
CP are constant volume and pressure heat capacity, dT is 
temperature change in the range of T1 and T2. 

For an ideal gas, 

 CP � CV = R. (7) 

therefore, the change in total energy can be rewritten as 
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Table 5. High Temperaure CP by Equipartition Theory (EQ) versus Computed (Comp) 

Molecule Natoms Shape Etrans Erot Evib CP (EQ) CP(Comp) 
N2 2 Linear (3/2)R R R 9 9 
CO2 3 Linear (3/2)R R 2R 11 14 
H2O 3 Non-linear (3/2)R (3/2)R (3/2)R 11 11 
C2H2 4 Linear (3/2)R R (7/2)R 14 17 
CH4 5 Non-linear (3/2)R (3/2)R (9/2)R 16 20 
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Figure 6. CP of di- and polyatomic gases at various temperatures. 

Table 6. Statistical-mechanical analysis of total energy [9] 

Mode of motion Energy, E Partition function, q 
Translational Etran = RT2(δlnqtrans/δT) qtrans = (2πmkT/h2)3/2.V 
Rotational Erot = RT2(δlnqrot/δT) qrot = Σ(2J + 1) exp[�

J(J + 1)h2/8π2IkT] 
Vibrational Evib = RT2(δlnqvib/δT) qvib = Σ[1 � exp(�

hν/kT)]�1 
 

 ∆E = E(T2) � E(T1) = E2 � E1 = T1∫
T2 (CP � R)dT  (5′) 

CP is dependent on temperature and can be represented as a 
power series:  

 CP = α + βT + χT2 + ��  (8) 

where α, β, � are the heat capacity coefficients (HC). 
Substituting 8 in 5′ and integrating between the limits of 

temperature, T1 and T2, the change in total energy becomes 
 

E2 � E1 = T1∫
T2 (α + βT + χT2 + � � R) dT  

or 
E2 � E1 = α(T2 � T1) + β/2 (T2

2 � T1
2) + χ/3 (T2

3 � T1
3) � � 

R(T2 � T1) 
or 
E2 + RT2 = H2 = (E1 + RT1 � αT1 � β/2 T1

2 �.) + (αT2 + β/2 T2
2 

+ �.) 
or 
H2 = Ho + (αT2 + β/2 T2

2 + �.) 
where 
Ho = (H1 � αT1 � β/2 T1

2 �.)   (9) 
The regression equation for any polynomial has the general 

form:  

 H = H0 + aT + bT2 + � (10) 

where a, b, � are the regression coefficients (RC). 
Comparing eqs 9 and 10, it can be seen that the HC are 

simple factors of the RC, such as α = a, β/2 = b, χ/3 = c, etc. 
Once the HC were calculated, CP was estimated using eq 8. 
Figure 6 demonstrates the consistency of the computed (comp) 
values of CP to experimental (exp) values obtained from a 
handbook [8]. 

If the high temperature CP values were analyzed, it could be 
shown that they approach the values predicted by the 
equipartition theory. Table 5 demonstrates this for the di- and 
polyatomic molecules. 

Using statistical mechanics concepts, it is possible to clarify 
two salient features of the classical and quantum mechanical 
analysis in this exercise: (1) translational and rotational 
contributions investigated using classical mechanics are 
identical to those computed by quantum mechanical methods 
in all temperature ranges and (2) quantum mechanical 
treatment of the vibrational contribution approaches the 
classical mechanics method only at high temperatures. Table 6 
provides energy and partition function expressions for the 
different modes of motion. 

In this table m is mass, V is volume, T is temperature, I is 
moment of inertia, J is rotational quantum number, ν is 
vibrational frequency, R is universal gas constant, k is 
Boltzmann constant, and h is Planck�s constant  

Combining the energy expressions and the partition 
function, it can be shown that Etrans = (3/2)RT, Erot = RT (linear 
molecules) and (3/2)RT (nonlinear molecules), and Evib = (3N � 
5)RT/2 (linear molecules at high temperatures) and (3N � 
6)RT/2 (nonlinear molecules at high temepartures). 

Conclusions 

The overall objective of this exercise was to show how 
macroscopic thermodynamics emerge from microscopic 
mechanics (classical and quantum). First, the students used a 
software that uses classical and quantum mechanics to study 
three-dimensional molecules. They built molecules, 
investigated their shapes, quantified contributions of the 
different types of motion to energy, and obtained normal 
modes of vibration. They then used linear and nonlinear 
regression analysis to understand the temperature dependence 
of different modes of molecular motion. A macroscopic 
property such as heat capacity was finally evaluated from the 
microscopic properties of different molecules. This exercise 
was successful in demonstrating the role of statistical 
thermodynamics in linking quantum chemistry to classical 
thermodynamics. 
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